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Large Models Have Taken The World By Storm
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SOTA Models are Getting Bigger and Bigger

Language Model Sizes Over Time
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Modern Machine Learning is Overparameterized

Let {(x;,y:)}", C R x R be a training dataset and let F be a space of
real-valued functions f : R? — R. Consider the learning problem

n

min > (3 — f(@:))? +AR(f), A>0.

=1
If F is an infinite-dimensional space, then this problem is

an “overparameterized” learning problem.

Example: Suppose {p }rez is a basis for F. Then, each f € F can be
represented as a model with an infinite parameters 8 = {0} }rcz such that

fo = Z Ocpr-
kEZ
The norm R(f) reflects the “size” of the parameters 6.
The function-space view is a powerful tool to study the

infinite-parameter limit of overparameterization.

Nonparametric methods as opposed to parametric methods.
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Regularization is Necessary

Without regularization (either implicit from the optimization algorithm or
explicit in the optimization problem), the overparameterized learning

problem
n

min m(yi — fz:))?

is ill-posed since there are many interpolating (zero-loss solutions).

Which interpolating function (of the many possible) will be selected?
How does this choice affect performance/generalization?
Without regularization, it becomes challenging to answer these questions.

Plan: A tour through (nonparametric) methods in data science through
the unifying lens of explicit regularization in function space.

Goal: To provide sharp characterizations of the inductive bias of various
data-fitting methods.
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From Parametric to Nonparametric

Let © denote the parameter space. The associated parametric model
space is

Fo=1{fo: 0O}

Let C': © = R>( denote a parameter cost function. Given any f € Fg,

its parametric representation cost is defined by
R(f) =inf{C(0) : f=fs,0cO}

For an arbitrary (measurable) function f : R? — R, we can define its
nonparametric representation cost as

R(f) = liminfy, ¢ R(f), 3(fr)ren C Fo that converges? to f
B 400, else.

The native space is given by

F ={f :R? — R measurable : R(f) < +oo}.

“In an appropriate topology.
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Function-Space Inductive Bias

Suppose that we have a parametric method.

® A parameter space ©.
® A parametric model space Fo.
— A subset of measurable functions R — R.
® A parametric cost C': © — R>.
= C(0)=0.
= [0l2< [|6]]2 < C(8) < C(8').
A parametric method induces a native space F and a corresponding
nonparametric representation cost R : F — Rx.

min > L(yi, fo(@:)) +AC(6) <« min ;,c(yi,f(mi))HR(f)

=1

This is characterizes function-space inductive bias of F¢o.
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How Do Different Methods Look in Function Space?

® Can we characterize the nonparametric representation cost R?
® What are the properties of the native space F?

Is it a vector space?

Is it a metric space?

Is it a Banach space?

Is it a Hilbert space?

Does it have some other (topological) structure?
How is F related to classical function spaces?

FEELE

® How well does the parametric model space Fg approximate F?

® How well can we learn functions in F from data?

This is the function-space view of studying data-fitting methods.

The function-space view unifies classical and modern data-fitting methods.
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Three Remarkable Ideas in Data Science

® Kernel Methods

— (?-regularization of parameters
— Reproducing Kernel Hilbert Spaces
= Linear methods = not adaptive

® Wavelet and Sparse Methods
— (!-regularization of parameters
—> Besov Spaces and Bounded Variation (BV) Spaces
—> Nonlinear methods = adaptive

©® Neural Networks

£*-regularization of parameters

Barron Spaces, Variation Spaces, and Radon BV Spaces
Nonlinear methods = adaptive

Shallow vs. deep

LEEL

Classical methods were studied function space first.

Can we understand modern methods by characterizing their function spaces?
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Kernel Methods

n €N .
fa= Zal x;): a; €R F: RKHS induced by k
o S R(f) = 1
squared RKHS norm
C(a)=a"Ka

n n

min L(y;,[Kal;) + \a"'Ka < min L(yi, f(:)) + M| fl|%

R™ cF
ac i=1 ! i=1

® The equivalence < is understood via
A the representer theorem.

® There always exists a solution to the
’ problem over F that lies in the span of

shifted kernels.
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Wavelet and Sparse Methods

VYjk(z) = F: Besov space B!
=Y Oiptir: . A L1
fo ]Zk: ik Wk 2-3/2 (20 — k)
’ R() = I1fllst,
C(0) = |16]|n Besov norm

b3 Ll @)+ fllsy,

mi
reBl, =

mein ;ﬁ(ym fo(z:)) +A0][n =

® The equivalence < is understood via
the wavelet shrinkage algorithm.

® There always exists a solution to the
problem over Bi ; that is a sparse
combination of wavelets.
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Shallow Neural Networks

K —
{ folw) =3 wwo(wle) eeﬂld}  (Banon Space
=1 ’ Radon-BV Space)
1= =
0(0) = 3 3 Jor + w3 B = =
P variation norm

min 3" £y folwi))+5 3 lonl+wil & min > £, £(@0) )]
i=1 k=1 i=1

® The equivalence < is understood via
Banach-space representer theorems.

® There always exists a solution to the
problem over F that is a sparse
combination of neurons.
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Deep Neural Networks

{fo(x) =o(Wro(Wr_1o(--- Wix)))}

F: exists
1 <& _
= EZ”WZH% R(f): exists
meinzﬁ(yi,fe(mi))—FZ ZHW@H% & mmZﬁ Ui, [ (@) +AR(f)
=1 =1

® The equivalence < is by construction.

® We currently do not know how to
characterize F or R(f).

— For L > 2, is it even a linear space?
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A Note on Universal Approximation

A common heuristic to explain the success of deep learning is that neural
networks are universal approximators. This heuristic is meaningless
since any reasonable parametric model space is a universal approximator.

® polynomials

® kernel machines

® Fourier series

® wavelets

® shallow and deep neural networks

Theorem (Stone—WeierstraB)

Let Q C R be compact and A C C(f2) be a subalgebra (vector subspace
closed under multiplication) that contains a nonzero constant function.
Then, A is dense in C(Q) if and only if it separates points (for every
x,x’ € 2 such that & # a’, there exists p € A such that p(z) # p(z’)).

Pop Quiz: Does the closing procedure mean F = C(Q2)?

When R(f) < oo, it is (typically) the case that F C C(Q).
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Outline

@ Hilbert Spaces < Linear/Kernel Methods

@ Banach Spaces < Nonlinear/Sparse Methods

© Banach Spaces < Shallow Neural Networks

@ Beyond(?) Banach Spaces < Deep Neural Networks
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Outline

@ Hilbert Spaces < Linear/Kernel Methods
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Hilbert Spaces: Basic Definition

Assume F is a vector space of functions defined on a domain Q C R<.
Will focus on functions with real outputs (scalar- or vector-valued).
We say (-,-)r : F x F — R is an inner product on F if it is:

® bilinear: {af + Bg,h)r = a{f,h)x + B{g, h)+ and
<faag+ﬂh>.7: = a<f,g>.7:+6<fa h>.7:

* symmetric: (f,9)r = (g, f)F
® positive definite: (f, f)r > 0and (f, f)x =0iff f =0.

Any inner product (-,-) 7 on F defines a norm on F by:

Ifll7 =V {f: fr

Definition

A Hilbert space is a vector space F equipped with an inner product
(+,)F that is complete with respect to the norm || - || =
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Example: Finite Collection of Basis Functions

Suppose F is the span of K linearly independent basis functions

@1y .-y PK:
K

fo= Orpr, OheR k=1, K
k=1

equipped with the inner product and norm

(fo.fa)r =08 = |folF = 1013

Then F is a finite-dimensional Hilbert space, and we have the equivalence

min ¥ (f(x:) —v)* + A fIF & Jnin L(yi,[VE];) + A6]3
i=1
where V € R"*¥ s such that [V];x = or(x;).

Learning over F is a simple finite dimensional ¢2-regularized problem!
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Limitations to Finite-Dimensional Hilbert Spaces

Finite-dimensional Hilbert spaces have limited approximation capability.

basis functions

target function

fit from 10 samples

fit from 50 samples

VAVAVAVAVAVE
NSNS
SN

N\

no improvement

/

Could improve by adding basis functions (but how many? what type?)

Can we solve this issue with an infinite-dimensional Hilbert space?
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L?-space

One of the most fundamental infinite-dimensional Hilbert spaces is

L*(Q) := {f Q- R: /Q |f(x)|?dz < +oo},

(f,9) 2 = /f z)dx = | flr20) = /Q\f(fc)\zdw

However, L?(Q) is “too big" of a space to be useful for learning.

Example: learning with L2-norm regularization
p g g

n

min Y (f(xi) = v:)? + Al £z

fFeL?(Q)
i=1
Pop Quiz: What functions oy ite=a
S . fla) = ‘
minimize this loss? 0 clse
Obtain zero loss by putting
“spikes” at the datapoints: I 1
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Reproducing Kernel Hilbert Spaces

For learning to be possible in a infinite-dimensional Hilbert space, we need
some additional regularity assumptions.

® Continuity seems to be a necessary requirement.
® But it is not sufficient — we also need to ensure that any sequence of
functions approaching a “spike” cannot vanish in norm.

The largest class of Hilbert Spaces having precisely this property are
known as Reproducing Kernel Hilbert Spaces

Definition

A Hilbert space of functions F is called a Reproducing Kernel Hilbert
Space (RKHS) if for all € ) there exists a constant C,, such that

|f(x)] < Cx|fll7 forall feF.

Interpretation: if f is non-zero at any point, its norm is also non-zero.

Aronszajn 1950 21/114



Kernel Functions

In the language of functional analysis, an RKHS F is a Hilbert space
where the evaluation functionals f — f(x) are continuous.

By a result known as the Riesz Representation Theorem, this implies for
all x € Q) there exists a function K, € F such that

(Kg, fYr = f(z) forall feF.
Define the associated kernel k£ : 2 x Q@ — R by
k(x,z') = (Kg, Kgr) = Kg(2') = Kpo ().
Two important properties: kernels are
@ symmetric: k(z,z') = k(z', ), for all , 2’ € Q and

@® positive semidefinite: for any finite set of points {x1,...,x,} C Q,
the kernel matrix K € R"*"™ with K;; = k(;, ;) is a PSD matrix.

k(xy) kernel matrix K
0

‘ ]
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Example: Bandlimited Functions

Let B C L?(R) be the space of functions f : R — R whose Fourier
transform f(&) vanishes for all frequencies || > B.

Pop Quiz: Why aren't “spike” functions allowed in this space?

Define the sinc function s(x) := F~*(1;_p,p))(z) = sin(Bz)/mz

~ ~

Key property: sx* f = f for all f € B, since 5/*7 =s5-f=1

Put another way, we have
f@) = (5% Pz /f )s(a — x)da’ = (f,5(- )

Therefore, B is an RKHS with kernel function k(z,z’) = s(x — /).
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Example: the Sobolev space H*((2)

Let H*(2) denote the space of functions f : 2 — R whose partial
derivatives up to order s belong to L?(2), equipped with the inner product

) = 3 /Q D f(@)D%g(@)de = [f13m@ = S ID*feo

la|<s lef<s

Fact: H*(Q) is an RKHS iff s > d/2

Smoothness s > d/2 is necessary, since otherwise arbitrarily thin “spike”
functions would have vanishing norm:

fo(@) = f(x/e) = 0 fell 12 = 710" ] 12
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Building RKHSs from Kernels

Every RKHS induces a kernel k(-,-) that is symmetric and positive
semidefinite.

On the flipside, given any function k : Q x £ — R that is symmetric and
positive semidefinite, we can construct a RKHS having k£ as its kernel.

@ Take the span of all kernel translates k(-, x):
neN

span{k(-,x) :x € Q} = fa_Zal xz;): a; €R
wiERd

® Equip this space with the inner product:

= Zaik(~,wi)7 g= Za;k(,w;) = (f,9) = ZZ a;aik(z;, x;)
i=1 j=1 =1 j=1

© Take the closure of the space (in the induced norm) to get the RKHS.

Theorem (Moore-Aronszajn)

Every SPD function (-, -) defines a unique RKHS with & as its kernel.
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Examples: Common Kernels

Linear Kernel k(x,y) ==x"y,
Polynomial Kernel  k(x,y) = (x"y +1)%, for some k € N

Gaussian Kernel k(x,y) = exp(— 2z |l — y||3), for some o >0

-

’

Another common way to create kernels is with a feature map ¢ : 2 — H
where H is a Hilbert space (typically R”):

k(x,y) = (¢(x), o(y))n

Example: ¢ : R — R3 given by () = [1,v/2z, 22| gives the
polynomial kernel k(x,y) = 1+ 2zy + 2%y? = (zy + 1)?
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Example: Tangent Kernels

Given a parametric model fg(x) = f(0;x), linearizing about 8 = 8 gives
f(8;x) =~ f(8p;x) + Vo f(Bp;z) (0 — 6p).
For any fixed @ define the tangent kernel kg
ko(z,2') := Vo f(0;2) Vo f(8;x'), forall x ' €
which is the kernel arising from the feature map ¢(xz) = Vo f(0, ).

Jacot et al. 2018 showed that when fg is o
a randomly initialized neural network im0
architecture, in the limit of the ‘
hidden-layer widths approaching infinity,
ko(x,x") converges to an explicit kernel
that stays constant during training—the

neural tangent kernel.

Infinitely-wide neural network architectures define kernels

Does this RKHS perspective explain the astounding

success of neural networks?
27 /114



RKHS Representer Theorem

Let 7 be an RKHS with kernel £ : Q x Q@ — R. Fix A > 0. Then

f* EargmanE (), ) + Al fIF = f*(= ZGZ T, ).

feF i—1
for some a; € R.

Proof sketch for square-loss:
min Y "(f(@:) — v:)* + A £ F = mmZ Koy £)7 —ui)* + MF, £)F

ferF

i=1

Set the “derivative” 0/0f of the loss to zero:
22 Kmﬂf F = yz)K +2)‘f =0 = f _Zaz x; -
i=1 i=1

Wahba 1990; Schélkopf and Smola 2002

28/114



The “Kernel Trick”

Restricting to only functions of the form f =>"" | a;k(-,x;) we have
i L(ys, f(x:)) + | £ % i L(y;, [Ka);) + \a" K
pin 3Ll f(@) +AIFE @ min 3Ll [Kal) + T Ka

where K € R™™" is the kernel matrix K;; = k(x;, ;). This is now a
finite dimensional optimization problem we can solve easily.

Example: Gaussian RBF kernel f(z) = Y1 | a; exp(— 52z (z — 2;)?)
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Example: Smoothing Splines

The solution to

mmz fx)) +)\/ ID2f(2)[2 dz

is a cubic (smoothing) spline, ~ D2 f|2,

n

fspline(x) = Za: k(xvxi)7

=1

i larizer =
—Kal2 )\aTKa. quad.rat|c. regul
Y ||2 + solution linear in data y

where a* = arg min, cg»
If y; = f*(z;) +&; with f* € H?, then

EHf* - fspline“%2 = O(n_%) minimax rate

van de Geer 2000
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Limitations of Linear/Kernel Methods

True function and noisy data

large A:
oversmooths high variation
portion of the data

small \:
overfits low variation W\/\/\N\/\/W
portion of the data

Linear methods cannot adapt to spatially varying smoothness.
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Limitations of Linear/Kernel Methods

wavelet shrinkage

neural network
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Limitations of Linear/Kernel Methods

True function Thin-plate spline Neural network
and noisy data (kernel method)  (nonlinear method)

Neural networks can adapt to low-dimensional structure.
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Summary

® Kernel methods are well-understood from the function-space view.

— Essentially by construction.

= There is a one-to-one correspondance between a kernel k(-, -) and
their associated RKHS Fy.

® We know when kernel methods work and how well they work.

— Kernel methods are “optimal” for learning functions in their
associated RKHS.

® We know that there are situations where they do not work.
— There are fundamental drawbacks to linear methods.
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Outline

@ Banach Spaces < Nonlinear/Sparse Methods
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Banach Spaces - Basic Definition

Assume F is a vector space of functions defined on a domain Q C R%.

We will focus on functions with real outputs (scalar- or vector-valued).
We say that ||-|| 7 : F — R>¢ is a norm if it is:

® subadditive: ||f + gll= < [|fll=+llgll7
® homogeneous: |[af||F = |a||f|F
® positive definite: ||f||z =0 if and only if f =0

Remark: Every inner product (-, -) induces a valid norm: | f||? == (f, f).

Definition
A Banach space is a vector space F equipped with a norm ||- || that is
complete with respect to the norm ||-|| .
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Reproducing Kernel Banach Spaces

A Banach space of functions F is called a Reproducing Kernel Banach
Space (RKBS) if its norm ||-|| 7 is strictly convex, if its dual norm ||-|| =
is strictly convex, and for all € Q there exists a constant C,, such that

|f(x)] < Cx|fll7 forall feF.

® Strict convexity of the norm and dual norm ensures the existence of a
unique reproducing kernel k : Q x Q — R with k(x, -) € F and
k(-,x) € F and

(k(-,z), f) = f(z), forall feF.
(f' k(z,-)) = f'(x), forall feF.

® The RKBS shares many similarities to the RKHS framework, but
reflexivity is too strong of a condition to capture important spaces
related to sparsity.

Zhang et al. 2009; Lin et al. 2022; Bartolucci et al. 2023 37/114



Sparsity = Feature Learning?

In Hilbert-space methods, the learned models are linear in parameters.

Linear methods cannot adapt to spatially varying smoothness.

Linear methods do not learn features.

Early approaches to circumvent this issue were based on sparsity:

® lasso (Tibshirani 1996)
® sparse approximation (DeVore 1998)
® wavelet shrinkage/thresholding (Donoho and Johnstone 1998)
® compressed sensing (Candes et al. 2006; Donoho 2006)

Sparse methods are nonlinear in parameters.

Is sparsity key to understand feature learning?
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Sparsity and the Quest for Adaptivity

Latent Variable Perspective: The target function depends only on an
r-dimensional projection (r < d) of the input.
Manifold Hypothesis: d-dimensional data sets that occur in the real
world actually lie along r-dimensional latent manifolds (r < d).
Structured Smoothness: The target function has some unknown
structured smoothness.

Can we design methods that adapt to the unknown structure?

Sparsity = adaptation

Adaptation = feature learning?
Bach 2017 39/114



Sparse Models: Finite-Dimensional Case

Returning to our simplest parametric model, where F is the linear span of
a dictionary of finitely many functions ¢1,..., pk.

Fo = F =span{pp}f,

K
fo=) Opor, C(8)=10]1 .
z; R(f) = 0:}I1=ffe||9||1

The learning problem is

n

i L(yi, [VO];) + A|6]]1,
Jin 2 (i, [VO]:) + All6]ly

where the ith row of V € R"*¥ s
V = [p1(s), p2(xi), - -, 0r (24)]

® Data-fitting over F is equivalent to a finite-dimensional convex
optimization problem.

® There always exists a solution with at most K dictionary functions.
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Sparse Models: Infinite-Dimensional Case

What if we had an infinitely large dictionary? {¢x}rez

Fo C F= span{cpk}kez
fo=> bior, C(6) =|6]n
kEZ R(f)= inf |0
: (f) = it 6]l
The learning problem is

i L(y;, V{0 A6 e
o2l 2 (yi, V{0}) + A0]
where V : (1(Z) — R™.
® Data-fitting over F is equivalent to a infinite-dimensional convex
optimization problem.

® Solutions have infinitely many dictionary functions? Are we screwed?

Luckily, we are not.
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Intuition: Soft Thresholding

Consider the “denoising” problem

pin Iy = OlIF: + IOl = min %[@k = 00)? + A6k ]

Pop Quiz: What is the solution to this problem?

This problem can be “decoupled”.
gnil]é (yx — 01)? + M0x| = soft thresholding of
kE
= Ok = sgn(ye) max{0, |y| — \/2}

Since 0 € ('(Z), the sorted coefficients |0(1)| > |0(2)| > --- must decay
strictly faster than 1/k.

For every A > 0, only a finite number of coefficients will be nonzero.

Soft thresholding is nonlinear in parameters.

Donoho and Johnstone 1995 42/114



Representer Theorems for /!-Norm Regularization

The sparsity of solutions is related to the convex
geometry of the optimization problem.

n

£ i, V{0 A0 o = 0|
ol 2 (yi, V{6}) + A6 oin 161l

> Ll Vi6)) < B

< min ||0H41 s.t. V{@} e C Cc R"
ocit(z

There exists a solution 0 that is n-sparse.

® Tightly linked to Carathéodory’s theorem for convex hulls.
® This is an example of a Banach-space representer theorem.
= ('(Z) is a non-Hilbertian Banach space.

Chandrasekaran et al. 2012 3114



Geometry of /'-Norm Regularization

The extreme points of the ¢!-ball are 1-sparse vectors.

1-sparse vectors are Kronecker deltas:

1, ifn=k
ex[n] = ] = {O else

Pop Quiz: What are the extreme points of the ¢2-ball?

44/114



Convex Optimization in Infinite Dimensions?

n

q Convex problem, but
L(y;, V{0}) + X\||0 L !
egel}?Z) = (i, Vi6}) 6] infinite-dimensional.

BUT, we know there exists a solution 0 that is n-sparse:
o= 0oyl
j=1

Pop Quiz: Can we just optimize over n-sparse sequences?

Yes, but the problem becomes nonconvex.

45/114



Wavelet Shrinkage

fo(x) = 0;k2792p(2x — k) C(8) = |||l

Jrk

mein Zﬁ(yi’ fo(xi)) + A6

=1

® We can efficiently solve this
optimization problem by thresholding
the empirical wavelet coefficients.

® The resulting solution is able to adapt
to intrinsic structure in the
data-generating function.

Donoho and Johnstone 1994
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Spatially Inhomogeneous Functions

Spatially inhomogeneous functions have different kinds of local regularity.

Designing locally adaptive estimators was of great interest in the 1990s.
® Real-world signals (low-dimensional objects) are spatially
inhomogeneous.

® | inear methods cannot adapt to spatial inhomogeneities while
sparse/nonlinear methods can.

— Mathematical foundations for the success and popularity of wavelets.

What kinds of function spaces capture spatial inhomogeneities?

Donoho et al. 1990 47 /114



Besov Spaces and Bounded Variation (BV) Spaces

Spatially inhomogeneous functions are well-captured by
Besov and Bounded Variation (BV) spaces.

® The Besov space B, , is the space of functions with s derivatives in

LP, where g allows for finer control of the regularity:

S S /
Bp,q C prq, & qg<q

—> When p < 2, By , contains functions that are spatially
inhomogeneous.

® The (total) variation of a function is

TV(f _SUPZV%H </|f |dw)

where the sup is over aII partitions. BV is the space of functions with
bounded (total) variation TV(f) < oo.

— feBVF o fED e BV & TVF(f) = TV(f*D).
* BV* is morally a Besov space since we have the sandwich

B, cBV* c Bf ..
DeVore 1998
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Native Space of Wavelet Soft Thresholding

Vjk(z) = F: Besov space Bi
’ R() = Ifllsy,
0(0) _ ||0||€1 Besov norm

min 3 Ly, fal@)) + A0l < min Y Ll fz)+AF D,
bl i=1

=1

o (L limits of wavelet coefficients
converge to Bj ; functions
= Other choices of sequence space
norms give rise to all other Besov
spaces B ,.
® There always exists a solution to the
problem over Bh that is a sparse and
finite combination of wavelets.
= Soft-thresholding is the algorithm of
choice.

|\/|eyer 1992 49/114



Integral Representations of Functions

For smooth functions on [0, 1], by the fundamental theorem of calculus, we
have that

x 1
f(x):f(())+/0 fdt = f(x):f(0)+/ ReLU"(z—t)f'(t) dt.

0

If we iterate this process...

k—1
fla) =Y f90) + / 1 ReLU* (& — ) f®) () at
5=0 0

Pop Quiz: When is this quantity well-defined?

 If P < oo
® Suppose k =1 and f(z) = ReLU%(z — 0.5).
- f/(l‘) = 501,5.
= f(x) :/ ReLU’(x — t) ddo.s.
0
* Identify f*) with a measure v = ||v||p < 0.
Fisher and Jerome 1975 50/114



BV Spaces and Continuously-Indexed Dictionaries

For smooth functions, we have that

n—1 1
V() =sup Y| faisn) = f(o)| = [ 1 @) da.
i=0 0

For nonsmooth functions,
V) =1flm = TV =[D" fllm.

If f € BV¥ and v = D* f, then,

Z cjxd + / ReLU* ! (z — t) du(t)

® Peano kernel formula
® |nfinite-width neural network?

* feBV* = f can be build from the continuously-indexed
dictionary {ReLU* (. — t) }eo,1]-
Fisher and Jerome 1975 51/114



Minimax Optimality of Nonlinear Methods

Pop Quiz: What is the regularity of this function?

e This is a BV? function.

e The minimax rate for BV? is

inf sup
f feBV?
TV?(f)<C

smoothing spline

E|f - fll3. < n~%/°

wavelet shrinkage

n—3/4

n—4/5

e 1 —3/4 is the linear minimax rate
Donoho and Johnstone 1998; Mammen and Geer 1997
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Sparsity in the Continuum

Discrete sparse model: Continuous sparse model:

>~ n, C(6) = 8] / pe di(€), C() = Ivlm

kEZ =

The continuous model is “backwards compatible” with the discrete model.

> Oide,

kEZ

= 16kl = [6lls

M keZ

Pop Quiz: Why don't we use the L'-norm for continuous sparsity?
® The extreme point of the unit ball of /1(Z) are the Kronecker
deltas: {ek}kez.

® The extreme points of the unit ball of M(Z) are the Dirac
deltas/measures: {0¢}¢c=.

® The extreme points of the unit ball of L!(Z)...do not exist.
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Variation Spaces

Given a continuously-indexed dictionary D = {¢¢ }¢c=, the variation
space of D is the space

v=v(0) = {5~ [ecane): ve M@},

This forms a Banach space when equipped with the norm/representation
cost

R(f) = = inf
(D=1l =, inf_ [l

I=f

Example: BV* (modulo polynomials) is a variation space with respect to
the {ReLU" " (- — #)},¢(0,1) dictionary.

The variation norm is the continuous counterpart of the atomic norm.

Barron 1993; Kirkova and Sanguineti 2001; Mhaskar 2004; Bach 2017
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Variation Spaces as a Closure

9
Zﬁk%w ( %) F =span{p¢tees

= 19
If the dictionary D = {p¢ }eez is sufficiently regular, then
V(D)=F

Observation: Variation spaces are ¢!-limits of combinations from
continuous dictionaries.

Donoho 2000; Siegel and Xu 2023
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Meyer's Bump Algebra

Let K, denote the Gaussian kernel centered at . Consider the dictionary

G = {Kz}weca, where Q C RZ.
The variation space V(G) is called Meyer's Bump Algebra.

V(G) = B{ 1(9)
On the other hand, the RKHS F generated by G is fundamentally
different.
F C H*(Q) for any s >0
® Fis an extremely small space.

® V(G) is reasonably large.
= F VG

Pop Quiz: Why did we get different spaces from
the same parametric model space Fg?

This is alluding to a gap between Hilbert- and Banach-space methods.

Meyer 1992
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Representer Theorems for M-Norm Regularization

Fix a dictionary D = {(¢ }ec= of continuously-parameterized functions.
For any data set {(x;,v;)}?, and lower semicontinuous, bounded from
below, and proper loss function £(-, ), there exists a solution ¥ to

n

min Ly, fo(x;)) + A|v[|am, A>0,
i 3 Ll (@) + Al

that leads to a representation of the form

K
fo@) = g (@), K<n
k=1

There always exists a solution that is a K-sparse sum
of dictionary functions.

Fisher and Jerome 1975
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Convex or Nonconvex?

min_ 3 L(yi. fu(@0) + Al] Convex problem, but
vEM(E) — infinite-dimensional.

BUT, we know there exists a solution U that is K-sparse:
K
5(@) =) vipe, (@)
k=1

Pop Quiz: Can we just optimize over K-sparse sums?

Yes, but the problem becomes nonconvex.

.....

El ..... 5}(11

Lmin E(yz,kagogk x; ) + Allv|1
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Geometry of Convex Regularization

The “atoms” of the solution are the extreme
points of the regularization ball.

Chandrasekaran et al. 2012 50,114



Abstract Representer Theorems

Consider the learning problem over the function space F

n

flgft 2 Ly, f(x:)) + AR(f).

Under appropriate hypotheses on F and R, there always exists a sparse

solution of the form .

fzzvkek7 KSTL,

k=1
where e, € Ext({f € F : R(f) <1}).

Infinite-dimensional optimization problems with finite
data constraints always admit sparse solutions.

Boyer et al. 2019; Bredies and Carioni 2020; Unser 2021 60,114



Summary

® Sparsity allows for methods to adapt to structure.
— Linear methods (including kernel methods) cannot.
— Quantification via minimax and linear minimax rates.
® |Infinite-dimensional sparse models correspond to convex problems.

— These problems can be recast as finite-dimenensional non-convex
problems.

== This will play a key role in understanding neural networks from the
function-space view.

® The infinite-dimensional perspective reveals interesting aspects about
the geometry of convex regularization.

— Abstract representer theorems and extreme points.
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Outline

© Banach Spaces < Shallow Neural Networks
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What is the Inductive Bias Shallow Neural Networks?

What kinds of functions do neural networks prefer?

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions
of a Sigmoidal Function

Andrew R. Barron, Member, IEEE

i
L T
Andrew Barron

Barron (1993) introduced a class of d-dimensional functions
that can be approximated extremely well by neural networks.

e Such functions can be approximated by a neural network
with K neurons at a rate K~ 2.

. . -
e Rates for classical function classes behave as K~ d«_

the curse

= Andrew Barron broke the curse of dimensionality!
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Spectral Barron Spaces

Let #° C L'(R?) be the space of functions for which

/]

g = / Fl@)|(1+ [w])* dw < +o0

Then % is a Banach space and is now referred to the sth order spectral
Barron space.

e Barron 1993 proved that functions in %' can be approximated by
shallow sigmoid neural networks at a rate that does not grow with
input dimension!

— Klusowski and Barron 2018 extended this result and proved that
functions in %2 can be approximated by shallow ReLU neural
networks at a rate that does not grow with input dimension.

® Spectral Barron spaces are variation spaces for the dictionary

{1+ @)™} epo

Barron 1993; Klusowski and Barron 2018; Siegel and Xu 2020 64/114



Maurey—Barron—Jones Lemma

Theorem

Fix a dictionary D = {p¢ }¢cz of bounded functions and let V = V(D) be
the associated variation space. Given f € V), there exists

K
fr = vepe,

k=1

such that
If = fxllz2@) Se llFIVE 2

Variation spaces admit dimension-free approximation rates.
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Limitations to Spectral Barron Spaces

® Spectral Barron spaces offer an incomplete description.

— % provides a sufficient condition for approximation by shallow ReLU
networks with dimension-free rates.
= This kind of regularity is not necessary.

Example: A single ReLU neuron does not lie in %2

Question: What is the largest space of functions approximable
by a shallow network (with a given activation function) at a
particular error rate?

This is a fundamental problem in approximation theory.

® Currently, there is not a complete characterization of the
approximation spaces of shallow neural networks, but sufficient
conditions are known. (DeVore et al. 2025)
= In 1D, these spaces are known and coincide with Besov spaces.
(Petrushev 1988)
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Neural Balance and Weight Decay

mathematical expression

/ for a single ReLU neuron

R?> 2 v(w'z), € RP
weight decay in training
is equivalent to adding
lw[3 + [[0]3 to the
Rel U activation training objective

Neural Balance Theorem

If a DNN is trained with weight decay, then the
2-norms of the input and output weights to each
ReLU neuron must be balanced.

[wllz = [[v]l2
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Neural Balance

The RelLU activation is homogeneous

v(w'z)y =+ 'v(hw'z),, forany > 0.

At a global minimizer of the weight decay objective, ||v||2 = [|w]|2.

Proof. The solution to

min |7 vllz + [rawll2
is 7 = /[vll2/l[wll2- =

[vl3 + [lwl3

At a global minimizer, 5

= [lv]l2[lw]2-

Grandvalet 1998 68/114



Secret Sparsity of Weight Decay

K
k=1
min L(yi, fo(x;
0={(wr,vk)} oy zz:;
min L(yi, fo(;
0={(wi, o) }E_, ;
min L(yi: fo(zi
9:{H('wk|,|'vk)}£(:1 ;
wyl[,=1

K
)+ A _llvkllslwklly
k=1

K
)+ A [lvkll,
k=1

0 = {(wr, vi) ey

weight decay

A K
2 2
N+5 > loklls + llwells
k=1

path-norm

multitask lasso

Rebalancing
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Secret Sparsity of Weight Decay

n

K
min ‘C 79 T; +)\ v
weight decay <= 0={(ws.o0)}X, ; (yi, fo(x;)) ;H kllo

lwell,=1

e Weight decay is equivalent to a non-convex multitask lasso.

— Convex reformulations of Ergen and Pilanci (2021, JMLR)
neural network training problems. Sahiner et al. (2021, ICLR)

What Kinds of Functions Do Neural Networks Learn?

Why Do Neural Networks Work Well in High-Dimensional Problems?
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Path-Norm and Representation Costs

K
Fo = {f(:z:) = ka(wgm)+ cop eRwp eRYUK € N}
k=1 finite-width

. . networks
The path-norm is a valid norm on Fg:

K
1117 =D loxlllwll,
k=1

The “completion” of Fg (in an appropriate sense) is a Banach space.
It is the Banach space of all functions of the form

f@) = [ ) du(w)
\

Barron (1993, IEEE Transactions on Information Theory) output weights

Bach (2017, Journal of Machine Learning Research)
Siegel and Xu (2023, Constructive Approximation)
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Path-Norm and Derivatives

K
folw) =Y
k=1

Dfo()

v (wrz — br) +

D%fp(x)

sl vl

orfuws|

path-norm(fg) = Z|Uk||wk| _/ ID? fo(x)|d

More rigorously:
total variation of D fg

BV? is the native space for univariate shallow neural networks.

Savarese et al. 2019
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What About the Multivariate Case?

(wTa —b)y

73/114



Multivariate Extension: The Radon Transform

Dirac “lines” filtered J at each
—> along activation —| Radon —» neuron
thresholds transform weight/bias

differentiate

twice

ReLU network 5 magnitude of

each 0: vg||wg|2

w = (cosB,sinf)

path-norm(fe) = Z|Uk|||wk||2 = [I[KZ Afollm

Ongie et al. 2020
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Functions of Radon Bounded Variation

total variation

Radon-domain TV?: ZTV?(f) = | K ZAf|| m of the measure
KZAf
K % = filtered Radon transform Kg(w) o< w]?~1g(w)
d_ 52
A= ; 871',26 = Laplacian operator

Average measure of sparsity of second
derivatives along each direction in R<.

% BV? is the space of all functions on R? with Z TV?(f) < oc.

Banach, not Hilbert!

Ongie et al. 2020; Parhi and Nowak 2021 75114



Representer Theorem

Neural Network Representer Theorem

For any data set {(x;, y;)}—, and lower semicontinuous L(-, -),
there exists a solution to

i L(yi, f(x:)) + AR TV?(f), X>0,
i ; (i, f (@) (£)
that admits a representation of the form
K
frerLu(x) = ka(wlw —bp)y +wix+by, K <n.
k=1

Training a sufficiently parameterized

neural network (K > N) with weight Neural networks learn
decay (to a global minimizer) is a solution % BV>-functions.

to the Banach space problem.

Ongie et al. 2020; Parhi and Nowak 2021; Bartolucci et al. 2023; Unser 2023 75,114



Neural Spaces

ZBV(Q)
Radon-domain BV space
“sparsity in Radon domain”

#%(Q)
~ spectral Barron space
[ ol ) do < oo

“sparsity in Fourier domain”

cartoon diagram
of unit % BV>-ball

H*(Q), s>d/2+2
Sobolev space
“s derivatives in L?(Q)"

Parhi and Nowak 2023
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Adaptation to Directional Smoothness

True function Thin-plate spline Neural network
and noisy data (kernel method)  (nonlinear method)

Variation in only a few directions is a defining characteristic of % BV?.
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Breaking the Curse of Dimensionality?

Given f € ZBV?, there exists a finite-width ReLU network

fx with K neurons such that
/V_{l Barron (1993)
_1_3 _1 Matousek (1996
I = ficllieio) = OU 4 = o4, ™
Siegel (2023)

By the inequality of Carl (1981), this implies

log N (8, U(ZBV?), || - || n=(a)) = O(6~ @43 ) = O(672).

unit ball

Approximation rates and metric entropies
do not grow with the input dimension d.

Parhi and Nowak 2023
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Minimax Optimality of Shallow Neural Networks

Suppose that {z;}"_, are i.i.d. uniform on a bounded domain 2 C R%.
If y; = f*(x;) + &; with %TV2(f*) < oo, then any solution to

weight decay
fReLU € argemln ZL: Yi, fol wz Z |Uk| + ||wk||2 objective
i=1

satisfies no curse
* 2 ~, _ dt3 ~, 1 /
E[[f* = freLullz2(q) = O(n™273) = O(n™2).

minimax rate

Linear methods (thin-plate splines, kernel methods, neural tangent
kernels, etc.) necessarily suffer the curse of dimensionality.

. . _ .3
Linear minimax lower bound: n™ a+3

the curse

Parhi and Nowak 2023 80/114



Depth Separation Result

Are there fundamental differences in the native spaces described by
(infinite-width) shallow ReLU networks versus deeper ReLU networks?

Put another way are there functions that have small three-layer
representation costs but large, or even infinite, two-layer cost?

The answer is yes: Ongie et al. 2020 showed there exists a class of
piecewise linear functions f* : R? — R such that R(f*) is infinite, yet
they can be represented exactly by small three-layer networks.
1
0.8
0.6

Example: “pyramid function”
0.4

fr@) = (1= [lllh)+ 02
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Depth Separation, Cont.

Recent work (McCarty 2023) proved that if f : RY — R is a continuous
piecewise linear function with finite pieces, then R(f) is finite iff f is
realizable as a finite-width shallow RelLU network.

Implication: If f: R? — R for d > 2 is any continuous piecewise linear
function with compact support, then R(f) = +oo
(b/c a finite sum of ReLUs is never compactly supported).

What can be said about deep network representation costs?

82/114



Outline

@ Beyond(?) Banach Spaces < Deep Neural Networks
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Deep Networks - Overview

Previously we saw that shallow NN trained with parameter ¢2 cost are
naturally associated with Banach spaces known as variation spaces.

The associated Banach space norm promotes functions that are a sparse
linear combination of neurons.

Question: What are the representation costs associated with deep NNs?
And what function space properties do they promote?

Question: What are the function spaces F associated with deep NNs?
Are they fundamentally different than variation spaces?

These are still mostly open questions!

' Gaod D Au A | & &V VYA CONSTRI
s i Stisiniciion Z7 0 o TESER SousTivcnian B K
M G
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Deep Newtorks - Overview, Cont.

Goal: Highlight recent efforts to characterize the representation costs
and function spaces associated with deep NNs.
@ Deep representation costs and non-linear notions of function rank.

= Warm-up: Deep Linear Networks
— Shallow ReLU nets w/multiple linear layers  (Parkinson et al. 2023)

— Deep RelLU networks (Jacot 2023b; Jacot 2023a)
® Deep compositions/hiearchies of function spaces, and representer

theorems

— Compositions of Variation Spaces

— Compositions of RKBSs

= Deep Kernel Compositions

(Parhi and Nowak 2022)
(Bartolucci et al. 2024)
(Chen 2024; Heeringa et al. 2025)
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Warm-up: Deep Linear Networks

Let Fjin be the space of linear functions from R? to R*. Then f € Fy, iff
flz) =Wz

for some matrix W € RFx4,
Suppose we parameterize elements of Fj;, as two-layer linear networks:

fo(x) =UVx

where U and V have inner dimension r > min{k, d}, with associated
parameter cost C(8) = L(|U||% + | V%)

Lemma (Burer and Monteiro 2003; Srebro et al. 2004)

o1 2 2
IWil. = _min (101 + |VI3).
where ||W||. is the nuclear norm (the sum of all singular values of W),
This shows the representation cost of a linear function f(x) = Wa

parametrized as a two-layer linear network is ||[W||...
86 /114



Warm-up: Deep Linear Networks

Now, suppose we parameterize elements of Fj;, as L-layer linear networks:
fg((lt) = WL s W2W1£B

with associated parameter cost:

L
1
CO) = 7 3 IWilt
=1

Then if f(x) = W, one can show the L-layer representation cost is the
Schatten-2/L quasi-norm of W (Dai et al. 2021; Wang et al. 2023):

rank(W)
L
Ro(f) = W% = Y ai(w)¥E.
=1

This is a non-convex penalty when L > 2.

Generalizations to deep linear convolution networks and other structured
matrix classes are considered in (Gunasekar et al. 2018; Dai et al. 2021).
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Warm-up: Deep Linear Networks

For a linear function f(x) = W, define rank(f) = rank(W). Then, in
the limit as the number of linear layers L tends to infinity

lim Rp(f) = lim |[W]|Z7, = rank(W) = rank(/)

L—oo

Therefore, (informally) we have:
n A L L
. — 00
mn > Lo fole)) 43 AWl £ mm§jcyz, (2))+) rank(f)

Deep linear networks trained with ¢2-regularization
are biased toward low-rank linear functions.

Can we understand representation costs of deep nonlinear neural
networks by alternative notions of function “rank”?
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Shallow ReLU Nets with Added Linear Layers

Linear Linear Linear Linear ReLU

Output

Parameteric Model: L-layer network, first L — 1 layers have linear
activation, final layer has RelLU activation, scalar outputs.

folx)=a'o(Wi_,---Wix +b)+c
This is a re-parameterization of shallow ReLU networks.
Parameter Cost: C(0) = %(Ha”2 +3 ||Wg||%)
Call the associated representation cost R'"(f).

How does the representation cost Ri"(f) change
(if at all) as the number of linear layers L increases?

Parkinson et al. 2023 89/114



Unit Alignment Effect of Linear Layers

The addition of linear layers is equivalant to penalizing a non-convex
Schatten quasi-norm on a single “virtual” inner-layer weight matrix:

i 1 L-1 -
RY(f) = min 7 lal+ == WL st f@) = aTo(Watb)+e.

This implies R"(f) promotes functions that are realizable as a shallow
ReLU network with low-rank inner-layer weight matrix. This can be

thought of as a unit alignment effect:

(a) L =2 layers (b) L =3 layers (c) L =4 layers

Can this effect be described in function space terms?
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Relation to Single- and Multi-Index Models

If f(x) =aTo(Wzx+b)+ c where W is rank-r, then there exists a
matrix V' € R?*" and function g : R” — R such that

flx) =g(VTa)

This is known as a multi-index model in the statistics literature.

The column space of V is often called the index space.

Estimating the index space from samples of f (and/or gradients of f) is a
classical problem (Li 1991). The expected gradient outer product
(EGOP) matrix is commonly used tool for this.

Definition
Given any weakly differentiable f : 2 — R and probability density function
p defined over Q C R?, define its EGOP matrix C; € R4 by

Cy = ExIVFX)VIX)] = [ V@)V @) (@) da
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Index Rank of a Function

For a multi-index model f(x) = g(VTx), the EGOP factors as

Cr=V_Ex[Vy(VIX)Vg(VIX)| VT

dxr YT X7

Under general conditions on g, can show that col(C) = col(V).

This motivates the following definition:

Definition (Parkinson et al. 2023)

Define the index rank of a function f, rank;(f), to be the rank of its
EGOP matrix:
rank;(f) = rank(Cy).

In particular, for the multi-index model f(x) = g(VTx)
rank;(f) = rank(V).

under general conditions on g.
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Bounds on the L-Linear-Layer Representation Cost

Theorem (Parkinson et al. 2023)

For all f: Q) — R realizable as a finite width two-layer ReLU network we
have the bounds

max{ Ry()%%, |C} 2|7, } < RI(F) < rank; (£) 7 Ra( )2/

Note: limy o0 ||Cl/2|\zéfL = rank(C 1/2 ) = rank(Cy) = rank;(f).
Also: limy,_, o rank;(f) =2 Ro(f)?/F = rank;(f)

Therefore, as a corollary, we have

lim RIM(f) = rank;(f).

L—oo

The R%"—cost favors functions with low index rank,
i.e., functions well-approximated by multi-index models.
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Related Work

® Bach 2017 gives generalization bounds for infinite-width shallow
networks having bounded variation norm assuming the target function
is a multi-index model.

® Recent line of work studies ability neural networks to provably learn
low-index rank structure when trained via gradient methods:
= Shallow networks (Damian et al. 2022; Bietti et al. 2022;
Mousavi-Hosseini et al. 2022)
— Three-layer networks (Nichani et al. 2023)

® EGOP analysis is central to the recently proposed “deep neural
feature ansatz” (Radhakrishnan et al. 2024) as a means to explain
feature learning in deep networks.
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Representation Costs of Deep ReLU Networks

L
Input o Output
[ ] ® [ ]
) %3(. [ J
]
o

Model class: L-layer fully connected ReLU network, unbounded widths
fg(:l:) = WL(WL,1 cee U(WQJ(Wlw + b1)+ + b2)+ o4 bLfl)Jr + by.

Focus on networks with vector outputs: fg : R%n — R%ut,
Parameter Cost: Cp(0) = 1| 6|3 (sum-of-squares of all weights/biases)

Call the associated representation cost Ry (f).

Jacot et al. 2022; Jacot 2023b; Jacot 2023a 95 /114



CPWL Functions

Every ReLU net realizes a continuous piecewise linear (CPWL)
function, in the following sense:

We say f: Q — RP is CPWL if f is continuous
and there is a polyhedral decomposition of €2 such

that f is affine on each polyhedra in the
decomposition.

Conversely, every CPWL function over R? can be represented by a ReLU
NN with at most [logy(d 4 1)] hidden layers (Arora et al. 2018).

The parametric model space of unbounded width L-layer ReLU nets
coincides with all CPWL functions when L > [logy(d + 1)]

The space of CPWL functions is a vector space, and is closed under
compositions: if g and h are CPWL, thensois f =hog.

However, it is not a closed space under any “reasonable” topology.
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Infinite-Depth Representation Cost

Define the “infinite-depth” representation cost of a CPWL function f:
Reo(f) = Jim Ry ())
— 00
R has the properties we would expect a “rank” on CPWL functions to
have (Jacot 2023b):
® Roo(fog) <min{Ru(f), Roo(9)}
® Ro(f +9) < Ro(f) + Roo(9)
o if f(x) = Ax + b then R (f) = rank(A).
Is there a function space description of Ry.?

A suggestive bound:

Lemma

Let f be CPWL, and suppose « € €2 is a point where f is differentiable.
Then

17 f (@) < Re(f)
where J f is the Jacobian of f.
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Jacobian Rank and Bottleneck Rank

The Jacobian rank of a CPWL function f: Q — R« is
rank s (f) = suprank(J f(x)),

taking the sup over points & € {2 where f is differentiable.

Definition:

The bottleneck rank of a CPWL function f: Q — Rt denoted
rankgn(f), is the smallest integer » € N such that f|q = (g o h)|q where
g and h are CPWL functions with inner dimension 7.

If f = ho g with inner dimension r, then by the chain rule
Jf(x) = Jh(g(x)) Jg(x) = rank;(f) <r.
d d
out X T 7 X din

This shows rank ;(f) < rankgn(f) for any CPWL f.

But there are CPWL functions where strict inequality holds.
Jacot 2023b
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Bounds on the “Infinite-Depth” Representation Cost

Theorem (Jacot 2023b)
For all CPWL functions f: Q2 — R

rank 7 (f) < Roo(f) < ranksn(f).

Further, it is conjectured that for all CPWL functions f

Roo(f) = rankgn(f).

Jacot 2023b 99/114



Related Work

Recent work by Jacot et al. explores the implications of the bottleneck
rank for learning:

® Emergent bottleneck rank structure CNNs  (Wen and Jacot 2024)
® Neural collapse phenomenon (Jacot et al. 2024)
® Feature learning in Leaky ResNets (Jacot and Kaiser 2025)
Related nonlinear notions of function rank have been proposed to
characterize implicit regularization in deep networks:
® Deep matrix factorization (Arora et al. 2019; Razin and Cohen 2020)
® Deep tensor factorization (Razin et al. 2021; Razin et al. 2022)
® Graph Neural Networks and Separation Rank (Razin et al. 2023).
® Rank minimization in deep ReLU networks (Timor et al. 2023)
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Summary and Outlook

Function spaces give a unified perspective to learning with kernel
methods, sparse methods, shallow NN, and (to some extent) deep NN.

Powerful tool for characterizing approximation, estimation, and
generalization capabilities of neural networks. (Bach 2017; E and
Wojtowytsch 2020; Siegel and Xu 2020; Schmidt-Hieber 2020; Zhang and
Wang 2023; E et al. 2022; Siegel and Xu 2023; DeVore et al. 2025)

Practical implications for efficient optimization and compression of

neural network models. (Ergen and Pilanci 2021; Yang et al. 2022;
Varshney and Pilanci 2024; Shenouda et al. 2024)
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Open

Problems

Several Key Open Problems Remain

Is there a function space characterization of Ry, the representation
cost associated w/ L-layer ReLU networks, for L > 27

What is the native space associated with Ry -cost? How does it
change with input dimension d? How does it change with depth L7

Does the depth-L native space “saturate” after some depth Ly?
Prove or disprove the conjecture R (f) = rankgn(f). (Jacot 2023b)

What connections can be drawn between function space perspectives
of explicit regularization versus implicit regularization arising from
practical training with gradient methods?
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