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1 Riesz Representation Theorem

Theorem 1.1 (Riesz Representation). Let (F,(-,-)) be a (real) Hilbert space and let ® : F — R be linear. If
O is bounded (or, equivalently, continuous), i.e., there exists B > 0 such that

[2(F) < BlfllF for all f € F, (1)
then there exists a unique ¢ € F such that

(f) = (¢, [f) for all f € F. (2)

Remark 1.2. We refer to ¢ € F as the Riesz representer of the functional ® : F — R.

2 Moore—Aronszajn Theorem

Let Q C R? be a domain and let k : Q x © — R be a kernel.
Definition 2.1 (Valid kernel). A kernel k is called valid if it is symmetric and positive semidefinite, i.e.,
k(z,2") = k(z',z), and Z Zaiaj k(x;,z;) >0, (3)
i=1 j=1
forallm e N, all xq,...,2, € Q, and all a4,...,a, € R.

Theorem 2.2 (Moore-Aronszajn). For every valid kernel k : Q x Q — R, there exists a unique reproducing
kernel Hilbert space (RKHS) (F,(-,-)) of functions Q@ — R such that for every x € Q,

k(-,z) € F, and (k(-,2), f) = f(x) forall f € F. (4)

Proof. Define
Fo =span{k(-,z) : x € Q} = {Z a;k(-,z;): neN, aq; €R, x; € Q} = {kernel machines}.  (5)
i=1

Define the inner product between two kernels as
<k(-,$),k(-7$/)> = k(:@x’), (6)
Next, we extend this inner product bilinearly to all of Fy. In particular, for f = > I, a;k(-,z;) and

g =25 bjk(-,}), we have that'

(fr9) =33 aiby k(wi, ). (7)

i=1 j=1

Tt can be shown that this bilinear extension is independent of the representation used to implement f and g (if multiple
representations exist).



With f € Fy as above, observe that the reproducing property holds on Fy since
k(- 2), ) =D ai (k(-,2), k(- 2)) = D ai ke, z;) = f(x). (8)
i=1 =1

The validity of k (symmetry and positive semidefiniteness) ensures that this satisfies the properties of
an inner product. In particular, if we define ||f||= = +/{f, f) for f € Fy, the Cauchy—Schwarz inequality
holds. One nuance that often goes overlooked is how the kernel being merely positive semidefinite is enough
to ensure that that inner product is positive definite. In other words, we need to ensure that for f € Fy, if
(f,f) =0, then f =0. Suppose that {f, f) = 0. Then,

[f @) =1 kG o) < IAIFEIRC, 2))%F = (f, ) Rz, 2) =0, (9)

which implies that f = 0.
In general Fo may not be complete. Let F denote the completion® of Fo under ||-|| £, i.e.,

(10)

T n tnen 1s Cauchy with respect to ||-
FeFr ) g g, Unlne yw p = |
fon— fasn—ooin |||

The reproducing property then extends to F by continuity.

To complete the proof, suppose that there exists a larger RKHS G O F whose reproducing kernel is &(-, -).
Since F is closed (by nature of being a completion), there exists a complementary subspace F* in G such
that

G=FaF" (11)

Thus, for every f € G, we can write f = f; + f2, where f; € F and f, € F*. For any f € G, we have that
<k(,.’£),f> = <l€(~,1’),f1 + f2> = <k(,l’),f1> + <k(,l’),f2> = fl(m) +0. (12)
In other words 7+ = {0} and so G = F. O

Remark 2.3. We have a bijection between (valid) kernels and RKHSs. Every RKHS has a unique kernel
(Riesz Representation Theorem) and every kernel induces a unique RKHS (Moore-Aronszajn Theorem).

Exercise 2.4. This exercise justifies the completion step in (10). Suppose {fn}nen C Fo is Cauchy in ||-||#:
[ fm — full7 = 0 as min{m,n} — oo. (13)

Prove that, for each x € Q), the scalar sequence {f,(x)} is Cauchy in R (with the usual metric), and hence
defines a pointwise limit

f(2) = lim fo(a). (14)

n—r oo

Proof. For each x € ,
[fm () = fo(@)| = [E(, @), frn = fn)]
< k()7 fm = fallF

= Vk(@, 2)[| fm = full 7 (15)

Thus, the scalar sequence {f,,(z)} is Cauchy in R (since \/k(x,z) = ||k(-,z)||F < 400 for each x € Q). O

2Technically, the completion is made up from equivalence classes of Cauchy sequences and arguing that pointwise limits exist
as in Exercise 2.4.




3 The Representer Theorem

Let (F,(-,-)) be an RKHS on Q with kernel k(-, ). Given data {(x;,y;)}7; C 2 x R and a loss function
L:R xR — RU{+o0}, consider the objective

J(f) =Y L, f(@:) + Al flI%F A >0. (16)
i=1
We are interested in studying the optimization problem
inJ(f). 17
min J(f) (17)

Before focusing on the case when J is given by (16), we first investigate general ideas to ensure existence of
minimizers to problems of the form (17).

3.1 Existence of Minimizers in Infinite Dimensions

In infinite-dimensional normed spaces, closed and bounded sets are generally not compact in the norm
topology (corollary of Riesz’s lemma), so “direct method” existence proofs often switch to weaker topologies
where bounded sets can be compact.

Definition 3.1 (Strong and weak convergence). Let F be a Hilbert space. A sequence {f,}neny C F
converges strongly (in norm) to f € F if

| frn — fll = 0 as n — oco.
A sequence {f,}neny C F converges weakly to f € F if
{fn,g9) = (f,g) asn — oo for all g € F.

Remark 3.2. Strong convergence implies weak convergence, but the reverse is not true. A standard coun-
terexample is the canonical basis {e, }nen of £2(N). We have that (e,,g) — 0 as n — oo for all g € £2(N),
but ||e,, — 0|z = 1 for all n € N.

Fact 3.3. All (strongly) continuous linear functionals on a Hilbert space are weakly continuous.
Fact 3.4 (special case of the Banach—Alaoglu Theorem). The closed unit ball

Br ={feF:|fl<1} (18)
of a Hilbert space F is weakly compact.

Remark 3.5 (Direct method in the calculus of variations). To establish existence of minimizers to (17), it
suffices® to show that .J is proper and there exists some topology 7 for which

1. J is 7-lower-semicontinuous (7-l.s.c.) and
2. J has 7-compact sublevel sets.
Indeed, properness ensures that the effective domain of J, denoted by
domJ={feF: J(f) <+oo} (19)

is nonempty. Next, let o denote the infimal value of (17). Pick any minimizing sequence {f, },en such that
J(fn) | . For 8 > a, there exists N € N such that for any n > N, J(f,,) < f, i.e., eventually, f,, lies in the
sublevel set

Sg={feF: J(f) < B} (20)
Since Sp is T-compact, we can extract a convergent subsequence from {f,},>n denoted by {fy,} en such
that f,, — f*, for some f* € Sg. Since J is 7-l.s.c., we have that

J(F) < liminf J(f,,) = a, (21)
Jj—o0

so f* is a minimizer.

30nce you already have T-compact sublevel sets (by any method), you do not need to assume that the objective is bounded
from below as an additional assumption.



3.2 The RKHS Representer Theorem

We now return to J of the form (16) and prove the famous RKHS representer theorem.

Theorem 3.6 (Representer Theorem). If, for every y € R, the loss function L(y,-) : R — RU {400} is
lower semicontinuous (l.s.c.), proper, and bounded from below, the solution set

S = argmiH{J(f) =D Ly fla) + )\||f||3r} (22)
fer i—1

is nonempty. Furthermore, every f* € S is of the form
fr= Zaik('7$i)~ (23)
i=1

In particular, if L(y,-) : R = RU {400} is also convex, then S is singleton.
Proof. Since L(y, -) is Ls.c., J is weakly l.s.c. Indeed,
e the point evaluation f +— f(x) is weakly continuous for all z €  and

e the norm ||-||r is weakly l.s.c. on F since

Ifllz="sup [(f g)l, (24)
€F

g
llgll =1
where we recall that the sup of weakly continuous functions is weakly l.s.c.?

Since L(y, -) is bounded from below, J is coercive.® Indeed, J is the sum of something bounded from below
and something coercive (all norms are obviously coercive). Since J is weakly l.s.c., it has weakly closed
sublevel sets. Furthermore, since J is coercive, it has bounded sublevel sets. Thus, it has weakly compact
sublevel sets and hence minimizers exist.

To establish the form of any solution, we first note that span{k(-,z;)}?_, is a closed subspace of F. Hence,
for any f € F, we can write

fr € spandk(-, i)},
fa L span{k(-, =)},

Since fa(x;) = (k(-,x;), f2) =0 for i =1,...,n, we have that

f=f1+f2={ (25)

D Llyis Flwi) =D Llyi, fi(:), (26)

=1

i.e., the data-fitting term is “blind” to the fo-component. Thus, only the regularization term penalizes the
fa2-component in the objective. Suppose that f* € F is a solution with (25) decomposition f* = ff + f3
such that f§ # 0 in which case ||fa]|7 > 0. Then, || f*||% = [|fF + 5% = /T II% + || f5]|% which implies
IfEll= < If*|l=, a contradiction. Therefore, every solution f* € span{k(-,z;)}™,, i.e.,

= Zaikc,xi). (27)

When L(y, -) is convex, J is strictly convex as the sum of something convex and something strictly convex
(since norms on Hilbert spaces are always strictly convex). Thus, the solution is unique. O

4In any topological space, the sup of continuous functions is ls.c.
5Recall that coercivity means J(f) — oo as ||f||F — oo.



