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1 Dual Spaces and Predual Spaces

Definition 1.1 (Dual space). Let F be a normed space. The (continuous) dual space of F is denoted by F’
and is the space of continuous linear functionals on F. We write the canonical pairing as (-, ) : F x F' = R,
ie,if feFand ge F, (f,g9) = glf]

Definition 1.2 (Bidual and canonical embedding). The bidual is F” := (F')’. There is a canonical linear
map ¢ : F — F defined by

(N(g) =glfl =(f,9), geF. (1)

Remark 1.3. We always have that |[c(f)||z2 = ||f]l# (so ¢ is an isometry). In particular, we can always
identify 7 C F”. If ¢ is onto, we say F is reflexive and we can identify F = F”.

Definition 1.4 (Dual norm). For g € 7', we define the dual norm as
lgll7 == sup [{f,g)l (2)
fer
Ifll=<1
When endowed with this norm, the dual space F’ is a Banach space.

Definition 1.5 (Predual). A Banach space X is a predual of a Banach space F if F = X’ (isometrically). In
this case we write the pairing as (g, f) for g € X and f € F = &".

Remark 1.6. Not every Banach space admits a predual. For example, L!(R) has no predual.

Definition 1.7 (Strong and weak convergence). Let F be a Banach space. A sequence {f,}neny C F
converges strongly (in norm) to f € F if

lfn— fll = 0 as n — oc.
A sequence {f,}nen C F converges weakly to f € F if
(fnrg) = (f,g) asn — oo for all g € F'.

Remark 1.8. The weak topology is still typically too fine for closed and bounded sets to be compact.

Definition 1.9 (Weak* convergence). Let F be a Banach space such that F = X’ is a dual space with
predual X. A sequence {f,}neny C F converges weak® to f € F if

(g9, fn) = (9, f) asn — oo for all g € X. (3)

Fact 1.10. If H is a Hilbert space, then the weak and weak® topologies coincide (after identifying H = H' via
the Riesz Representation Theorem). More generally, if F is reflexive, then the weak and weak® coincide (by
the identification F = F").



2 Banach—Alaoglu and Dixmier—Ng Theorems and Compactness

Theorem 2.1 (Banach—Alaoglu). Let X be a Banach space and let F = X'. Then the closed unit ball

Br ={feF: |flr<1} (4)
is compact in the weak® topology on F (induced by X ).

Remark 2.2. For optimization over dual Banach spaces, the weak* topology is often the “correct” topology
to work with.

Theorem 2.3 (Dixmier-Ng). Let F be a normed space and let T be a locally convex Hausdorff topology on
F. The following are equivalent:

(1) The closed unit ball Bx is T-compact.
(2) There exists a Banach space X such that F = X'.

Remark 2.4. The Dixmier-Ng establishes a fundamental impossibility result: If a Banach space does not
have a predual, there does not exist any “reasonable” topology such that its closed unit ball is compact.

3 Riesz—Markov—Kakutani Representation Theorem

Theorem 3.1 (Riesz—Markov—Kakutani). Let = be a compact (resp. locally compact) Hausdorff space. Let
C(E) (resp. Co(Z)) denote continuous real-valued functions on = (continuous real-valued functions on =
vanishing at infinity) endowed with the L>°-norm. Then, C(Z) = M(Z) (resp. Co(E) = M(E)), where
M(Z) is the space of finite (signed) Radon measures on =.

4 Fisher—Jerome Theorem

Let ¢ : © x 2 — R be such that for each z, ¢(x,-) is in C(Z) (resp. Co(Z)) when = is a compact (resp.
locally compact) Hausdorff space. Define the notation ¢ (z) = ¢(z, ). Furthermore, define

mm:/%wm«» (5)

Theorem 4.1. If, for every y € R, the loss function L(y,-) : R = RU{4o00} is lower semicontinuous (l.s.c.),
L(y,0) < +00,! and bounded from below, the solution set

S = argmin< J(v) = Zﬁ(yi,fy(:ci)) + Avl|lmp, A>0, (6)
veM(E) im1
1s nonempty. Furthermore, there always exists a solution v* € S that yields the representation
K
for = kacpgk, K <n. (7)
k=1

Proof. Since L(y, -) is Ls.c., J is weak® l.s.c. Indeed,

o the functional v — f,(z) is weak™ continuous for all z € € since

M@=Lﬂ%&M®=W%%W (8)

and p(z,-) € C(E) (resp. Cp(Z)) when = is compact (resp. locally compact).

IThis ensures that J is proper on M(Z).



e the norm ||-|| o is weak* Ls.c. on M(E) since

lla = sup — [{p, 1)}, (9)
peC(E) or Co(2)
lellz=1

where we recall that the sup of weak® continuous functions is weak* l.s.c.

Since L(y, -) is bounded from below, J is coercive. Indeed, J is the sum of something bounded from
below and something coercive (all norms are obviously coercive). Since J is weak* l.s.c., it has weak™ closed
sublevel sets. Furthermore, since J is coercive, it has bounded sublevel sets. Thus, it has weak* compact
sublevel sets and hence minimizers exist.

Let 7 € S be any minimizer and set z; == fp(x;) for i = 1,...,n. Consider the auxiliary problem
min ||lv s.t. T;) =2z,1=1,...,n. 10
VEM(E) || ||M fl/( z) i ( )

Its feasible set is nonempty (it contains ) Let S, be its solution set. Because the constraint set is weak*-closed
and the objective is weak™ l.s.c. with weak™ compact sublevel sets, S, is nonempty, weak® compact, and
convex. Thus, S, has extreme points by the Krein—Milman theorem. Finally, any solution to (10) is a solution
to the original problem (6). Thus, it suffices to show that there exists a solution to (10) that is supported on
at most n points.

Let v* be an extreme point of S,. We claim that v* is supported on at most n points. Assume for
contradiction that v* is supported on more than n points. Let v* = v} — v* be its Jordan decomposition
and let = = P U N be a Hahn decomposition for v* (so v* > 0 on P and v* < 0 on N). Since |[v*|(E) > 0
and supp(|v*|) has more than n points, we can find pairwise disjoint Borel sets Ay, ..., A,+1 C = such that
|v*|(A;) > 0 for each j, and each A; lies entirely in P or entirely in N. Finally, define A9 = E\ Ut A;.

j=1
Define the restricted signed measures
vi=va, j=0,...,n+1 (11)
Then, v* = Z?;rol v;, and the signed measures vy, v, ..., Vyq1 are pairwise mutually singular.
For each j, define b; € R™ by
(bj)z = fl,j (.’1%)7 1= 1,...,7’L. (12)
Since we have n + 1 vectors in R", they are linearly dependent. Thus, there exist scalars ay, ..., a,+1, not all

zero, such that Z;Lill ajb; = 0. Let

n+1

= Z a;v;. (13)
j=1

Then for each 1,
n+1 n+1

fulw) = ajfo, (@) = a;(b;)i =0, (14)
j=1 j=1

so v* + tu satisfies the constraints in (10) for all ¢ € R.
Because each v; has constant sign, there exists ¢ > 0 such that 1 +ea; > 0 for all j (e.g., take
€ < ming; -0 1/(2|a;|)). For such an e,

n+1
I/*:EEMZV()—FZ(l:l:é‘CLj)Vj, (15)

j=1
and no sign flips occur within each A;. Consequently, for ¢ € [—¢,¢] the map ¢t — |[v* + tu|| o is affine:

n+1 n+1

"+ tpll e = llvolla + D I +tag)vsliae = [vollac+ > (1 + tag)llva. (16)
Jj=1 j=1



where we used the fact that the A; are disjoint. But »* minimizes v — ||| a( over the feasible affine set, so
t = 0 is a minimizer of this affine function on [—¢, g]. Therefore its slope must be zero, i.e.,

n+1
> ajllvlm =0, (17)
j=1
and hence
[v* £ eplla = (V"] m- (18)

Thus, v* +eu € S, and they are distinct (since p # 0). Thus,

1 1
V= S ep) + (0" — p), (19)

contradicting that v* is an extreme point of S, .
We conclude that v* is supported on at most n points, i.e.,

K
v = kadgk, K <n, (20)
k=1
and therefore,
K
for = [ o (©) = 3" e (21)
E k=1
which completes the proof. O

Remark 4.2. The M-norm is not strictly convex, so uniqueness of minimizers for (6) is hard to guarantee, just
like finite-dimensional ¢!-minimization problems. In finite dimensions, compressed sensing gives conditions
implying uniqueness. In infinite dimensions, various “off-the-grid” analogues exist which provide conditions
for uniqueness using tools from convex duality.



