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1 Dual Spaces and Predual Spaces

Definition 1.1 (Dual space). Let F be a normed space. The (continuous) dual space of F is denoted by F ′

and is the space of continuous linear functionals on F . We write the canonical pairing as ⟨·, ·⟩ : F ×F ′ → R,
i.e., if f ∈ F and g ∈ F ′, ⟨f, g⟩ = g[f ].

Definition 1.2 (Bidual and canonical embedding). The bidual is F ′′ := (F ′)′. There is a canonical linear
map ι : F → F ′′ defined by

(ι(f))(g) := g[f ] = ⟨f, g⟩, g ∈ F ′. (1)

Remark 1.3. We always have that ∥ι(f)∥F ′′ = ∥f∥F (so ι is an isometry). In particular, we can always
identify F ⊂ F ′′. If ι is onto, we say F is reflexive and we can identify F = F ′′.

Definition 1.4 (Dual norm). For g ∈ F ′, we define the dual norm as

∥g∥F ′ := sup
f∈F

∥f∥F≤1

|⟨f, g⟩|. (2)

When endowed with this norm, the dual space F ′ is a Banach space.

Definition 1.5 (Predual). A Banach space X is a predual of a Banach space F if F = X ′ (isometrically). In
this case we write the pairing as ⟨g, f⟩ for g ∈ X and f ∈ F = X ′.

Remark 1.6. Not every Banach space admits a predual. For example, L1(R) has no predual.

Definition 1.7 (Strong and weak convergence). Let F be a Banach space. A sequence {fn}n∈N ⊂ F
converges strongly (in norm) to f ∈ F if

∥fn − f∥ → 0 as n → ∞.

A sequence {fn}n∈N ⊂ F converges weakly to f ∈ F if

⟨fn, g⟩ → ⟨f, g⟩ as n → ∞ for all g ∈ F ′.

Remark 1.8. The weak topology is still typically too fine for closed and bounded sets to be compact.

Definition 1.9 (Weak∗ convergence). Let F be a Banach space such that F = X ′ is a dual space with
predual X . A sequence {fn}n∈N ⊂ F converges weak∗ to f ∈ F if

⟨g, fn⟩ → ⟨g, f⟩ as n → ∞ for all g ∈ X . (3)

Fact 1.10. If H is a Hilbert space, then the weak and weak∗ topologies coincide (after identifying H = H′ via
the Riesz Representation Theorem). More generally, if F is reflexive, then the weak and weak∗ coincide (by
the identification F = F ′′).
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2 Banach–Alaoglu and Dixmier–Ng Theorems and Compactness

Theorem 2.1 (Banach–Alaoglu). Let X be a Banach space and let F = X ′. Then the closed unit ball

BF := {f ∈ F : ∥f∥F ≤ 1} (4)

is compact in the weak∗ topology on F (induced by X ).

Remark 2.2. For optimization over dual Banach spaces, the weak∗ topology is often the “correct” topology
to work with.

Theorem 2.3 (Dixmier–Ng). Let F be a normed space and let τ be a locally convex Hausdorff topology on
F . The following are equivalent:

(1) The closed unit ball BF is τ -compact.

(2) There exists a Banach space X such that F = X ′.

Remark 2.4. The Dixmier–Ng establishes a fundamental impossibility result: If a Banach space does not
have a predual, there does not exist any “reasonable” topology such that its closed unit ball is compact.

3 Riesz–Markov–Kakutani Representation Theorem

Theorem 3.1 (Riesz–Markov–Kakutani). Let Ξ be a compact (resp. locally compact) Hausdorff space. Let
C(Ξ) (resp. C0(Ξ)) denote continuous real-valued functions on Ξ (continuous real-valued functions on Ξ
vanishing at infinity) endowed with the L∞-norm. Then, C(Ξ)′ = M(Ξ) (resp. C0(Ξ)

′ = M(Ξ)), where
M(Ξ) is the space of finite (signed) Radon measures on Ξ.

4 Fisher–Jerome Theorem

Let φ : Ω × Ξ → R be such that for each x, φ(x, ·) is in C(Ξ) (resp. C0(Ξ)) when Ξ is a compact (resp.
locally compact) Hausdorff space. Define the notation φξ(x) := φ(x, ξ). Furthermore, define

fν(x) :=

∫
Ξ

φξ(x) dν(ξ). (5)

Theorem 4.1. If, for every y ∈ R, the loss function L(y, ·) : R → R∪{+∞} is lower semicontinuous (l.s.c.),
L(y, 0) < +∞,1 and bounded from below, the solution set

S := argmin
ν∈M(Ξ)

{
J(ν) =

n∑
i=1

L(yi, fν(xi)) + λ∥ν∥M

}
, λ > 0, (6)

is nonempty. Furthermore, there always exists a solution ν⋆ ∈ S that yields the representation

fν⋆ =

K∑
k=1

vkφξk , K ≤ n. (7)

Proof. Since L(y, ·) is l.s.c., J is weak∗ l.s.c. Indeed,

• the functional ν 7→ fν(x) is weak
∗ continuous for all x ∈ Ω since

fν(x) =

∫
Ξ

φ(x, ξ) dν(ξ) = ⟨φ(x, ·), ν⟩ (8)

and φ(x, ·) ∈ C(Ξ) (resp. C0(Ξ)) when Ξ is compact (resp. locally compact).

1This ensures that J is proper on M(Ξ).
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• the norm ∥·∥M is weak∗ l.s.c. on M(Ξ) since

∥ν∥M = sup
φ∈C(Ξ) or C0(Ξ)

∥φ∥∞
L =1

|⟨φ, ν⟩|, (9)

where we recall that the sup of weak∗ continuous functions is weak∗ l.s.c.

Since L(y, ·) is bounded from below, J is coercive. Indeed, J is the sum of something bounded from
below and something coercive (all norms are obviously coercive). Since J is weak∗ l.s.c., it has weak∗ closed
sublevel sets. Furthermore, since J is coercive, it has bounded sublevel sets. Thus, it has weak∗ compact
sublevel sets and hence minimizers exist.

Let ν̂ ∈ S be any minimizer and set zi := fν̂(xi) for i = 1, . . . , n. Consider the auxiliary problem

min
ν∈M(Ξ)

∥ν∥M s.t. fν(xi) = zi, i = 1, . . . , n. (10)

Its feasible set is nonempty (it contains ν̂) Let Sz be its solution set. Because the constraint set is weak∗-closed
and the objective is weak∗ l.s.c. with weak∗ compact sublevel sets, Sz is nonempty, weak∗ compact, and
convex. Thus, Sz has extreme points by the Krein–Milman theorem. Finally, any solution to (10) is a solution
to the original problem (6). Thus, it suffices to show that there exists a solution to (10) that is supported on
at most n points.

Let ν⋆ be an extreme point of Sz. We claim that ν⋆ is supported on at most n points. Assume for
contradiction that ν⋆ is supported on more than n points. Let ν⋆ = ν⋆+ − ν⋆− be its Jordan decomposition
and let Ξ = P ⊔N be a Hahn decomposition for ν⋆ (so ν⋆ ≥ 0 on P and ν⋆ ≤ 0 on N). Since |ν⋆|(Ξ) > 0
and supp(|ν⋆|) has more than n points, we can find pairwise disjoint Borel sets A1, . . . , An+1 ⊂ Ξ such that

|ν⋆|(Aj) > 0 for each j, and each Aj lies entirely in P or entirely in N . Finally, define A0 = Ξ \
⋃n+1

j=1 Aj .
Define the restricted signed measures

νj := ν⋆|Aj
, j = 0, . . . , n+ 1. (11)

Then, ν⋆ =
∑n+1

j=0 νj , and the signed measures ν0, ν1, . . . , νn+1 are pairwise mutually singular.
For each j, define bj ∈ Rn by

(bj)i := fνj
(xi), i = 1, . . . , n. (12)

Since we have n+ 1 vectors in Rn, they are linearly dependent. Thus, there exist scalars a1, . . . , an+1, not all
zero, such that

∑n+1
j=1 ajbj = 0. Let

µ :=

n+1∑
j=1

ajνj . (13)

Then for each i,

fµ(xi) =

n+1∑
j=1

ajfνj
(xi) =

n+1∑
j=1

aj(bj)i = 0, (14)

so ν⋆ + tµ satisfies the constraints in (10) for all t ∈ R.
Because each νj has constant sign, there exists ε > 0 such that 1 ± εaj ≥ 0 for all j (e.g., take

ε ≤ minaj ̸=0 1/(2|aj |)). For such an ε,

ν⋆ ± εµ = ν0 +

n+1∑
j=1

(1± εaj) νj , (15)

and no sign flips occur within each Aj . Consequently, for t ∈ [−ε, ε] the map t 7→ ∥ν⋆ + tµ∥M is affine:

∥ν⋆ + tµ∥M = ∥ν0∥M +

n+1∑
j=1

∥(1 + taj)νj∥M = ∥ν0∥M +

n+1∑
j=1

(1 + taj)∥νj∥M. (16)
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where we used the fact that the Aj are disjoint. But ν⋆ minimizes ν 7→ ∥ν∥M over the feasible affine set, so
t = 0 is a minimizer of this affine function on [−ε, ε]. Therefore its slope must be zero, i.e.,

n+1∑
j=1

aj∥νj∥M = 0, (17)

and hence
∥ν⋆ ± εµ∥M = ∥ν⋆∥M. (18)

Thus, ν⋆ ± εµ ∈ Sz and they are distinct (since µ ̸= 0). Thus,

ν⋆ =
1

2
(ν⋆ + εµ) +

1

2
(ν⋆ − εµ), (19)

contradicting that ν⋆ is an extreme point of Sz.
We conclude that ν⋆ is supported on at most n points, i.e.,

ν⋆ =

K∑
k=1

vkδξk , K ≤ n, (20)

and therefore,

fν⋆ =

∫
Ξ

φξ dν
⋆(ξ) =

K∑
k=1

vkφξk , (21)

which completes the proof.

Remark 4.2. The M-norm is not strictly convex, so uniqueness of minimizers for (6) is hard to guarantee, just
like finite-dimensional ℓ1-minimization problems. In finite dimensions, compressed sensing gives conditions
implying uniqueness. In infinite dimensions, various “off-the-grid” analogues exist which provide conditions
for uniqueness using tools from convex duality.


